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Continuum de Niveaux de Details pour les Masses de
Données Géométriques

Résumé : Dans ce papier nous proposons une solution unifiée a la création de niveaux de
détails pour de tres gros modeles. Nous construisons une distance signée hiérarchique dans
un octree autour des données, et nous utilisons cette hiérarchie pour générée un continuum
de niveaux de détail. La construction de fonction de distance, basée sur le GVF (Gradient
Vector Flow) et sur I’équation de Poisson, repose sur des algorithmes de résolution multi-
grille. Une fonction de distance hiérarchique continue est obtenue en utilisant un schéma
d’interpolation dans 'octree, ce qui nous permet de définir un continuum de niveaux de
détail pour les tres grosses géométries. Lors de ce processus, les trous et problemes de sous-
échantillonage des données en entrée sont automatiquement corrigés. Nous présentons trois
applications a notre hiérarchie: un nouveau schéma de modele déformable reconstruisant au-
tomatiquement des maillages eulériens fermés jusqu’a un million de polygones en quelques
minutes, une méthode de reconstruction guidée par la distance, et un tracé de rayons de
treés gros modeles.

Mots-clés : Niveaux de Détail, Equation de Poisson, Champs de Distance, Méthodes
Multigrilles, Gradient Vector Flow, Surfaces Implicites, Rendu.
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26k (0.7s) 11k (1.3s) 43k (34s) 175k (19s) 700 k (2:10) 2,500 k (27:40)

Figure 1: Levels of detail on the entire St Matthew model, generated using the hierarchical
deformable mesh reconstruction approach, driven by the proposed hierarchical continuous
distance. The initial computation for this 370,000,000 points input model required 1h40.
Below each image: number of triangles of the generated mesh (reconstruction time). Shading
is done using per vertex ambient occlusion.

n this paper we propose a unified solution for the creation of levels of detail on very large
input data. We build a hierarchical signed distance function in an octree around the data
and use this hierarchy to generate a continuum of levels of detail. Our distance function
construction, based on the Gradient Vector Flow and the Poisson equation, builds on multi-
grid resolution algorithms. Using an appropriate interpolation scheme within the octree we
obtain a continuous hierarchical distance function, which allows us to define a continuum
of levels of detail for huge geometries. During this process, holes and undersampling is-
sues in the input data are automatically corrected. We present three applications of our
hierarchy: a novel hierarchical deformable model scheme that can automatically reconstruct
closed Eulerian meshes of up to a million faces in a few minutes, an alternate distance-driven
contouring approach, and ray-tracing of huge data models.

1 Introduction

Nowadays, it is common to use acquired models of real objects to populate virtual environ-
ments. These models often come from 3D scanners or vision-based reconstruction techniques.
They are typically represented as large point sets, which most often include normal informa-
tion. For these representations to be useful in computer graphics applications, all operations
available on traditional models, such as meshing, rendering, creation of levels-of-detail, etc.,
must also be provided. In addition, such point sets often lack information in certain parts
of space, and thus require a hole-filling preprocess to be useable. Given the above, and the
constantly increasing size of these models, it is clearly desirable to have a multi-resolution
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4 Duguet et al.

representation of these data sets. Ideally, this representation should be fast to build, flexible
and easy-to-use.

In this paper, we are concerned with the construction of a scale-space, i.e. a continuum
of levels of detail for huge 3D models given as a set of points and oriented normals. If
models are provided as polygonal or parametric surfaces, we can sample them in points
and normals. To construct such a scale-space using previous techniques, it is necessary to
combine several different approaches, and to perform three distinct steps. First, an object
reconstruction step [CL96], followed by a hole filling phase [DMGL02], and finally a mesh
simplification process [Hop96], [HDD¥93, [GHI7]. This three-step approach is cumbersome
and costly since the maximal resolution object needs to be built first, and holes at this scale
need to be filled. Finally, the simplification step needs to process the full resolution data,
which can be extremely large [LPCT00]. For this process, all previous approaches, to our
knowledge, use a volumetric approach [CL96, [DMGL02, VCBS03, [ZOF01]. Because of the
size of the input, and the complexity of the problem, a hierarchical approach is necessary.
Indeed, doubling the precision of the reconstruction requires eight times the number of cells
for a regular grid.

We propose a unified solution to the creation of a scale space on very large data. We
build a signed distance function, which we extend to a large volume around the object,
arranged in an octree. The signed nature of this function enables us to easily perform
automatic hole-filling and address undersampling issues in the input data. This distance
is computed using well known partial differential equations (PDE): the heat and Poisson
equations. Using this approach, we build on the vast literature addressing the problem of
resolution of these equations (e.g. [Pop03, [LGF04]).

Once this signed distance function is built, we can extract meshes of isosurfaces (using
e.g. [Blo94l [LC8T, [JLSW02)]), and thanks to the continuity of our function, we can extract
offsets for the same cost. We also have a guidance vector field which can be used for a
projection operator. Finally, our distance function with its guidance vector provides us with
a very well adapted force field for deformable models (snakes), improving the performances
of previous methods [XP98| [HS04].

Related Work

In the Multi-level Partitions of Unity (MPU) approach |[OBAT03|, the authors build
a signed implicit function from the point and normals data sets. This technique includes
hole filling, and computes a level-set close to the input surface. However, the construction
algorithm - to its current extent - can only provide one level of detail. For other levels of
detail (i.e. other error bounds in the approximation) the entire construction needs to be
redone. Since the parameter of their construction controls the quality of the representation,
the size of the output is not directly controlled.

Another similar approach, used in [CBCT01} TO02], defines an implicit function based
on Radial Basis Functions (RBF). The function is constructed by selecting nodes from the
input data, and solving a linear system to generate the RBF. The complexity of these data
structures is directly related to the number of nodes, which are selected from the input data
points using a specific pruning process. The precision obtained depends on this pruning
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process, and is more flexible than a volumetric approach. However, this technique cannot
handle huge input models easily; and the scalability in terms of output resolution is unclear.

Another approach, presented in [SOS04], describes an algorithm to define an implicit sur-
face from a polygonal soup that can fit the input data. The approach produces a continuum
of surfaces with increasing detail, but each surface requires the same amout of computation.
Since the entire input dataset is used for the surface definition, this can be prohibitive for
huge models.

In [ZOF01], the authors guide a level set with a distance function. The function is
unsigned, and the convergence is reached when the normal to the level set surface is orthog-
onal to the gradient of the distance field (this criterion is similar to [AK04]). However, the
implementation reported is for regular grids, and a hierarchical level set seems difficult to
implement in this context.

In [VCBSO03], the authors present a hole filling technique based on the joint diffusion of
a scalar field and a vector field. This approach is related to ours in the idea of joint fields.
However, they use regular grids and joint PDEs, whereas we use an octree and PDEs which
are separable and which have very well known resolution schemes.

Others have used distance fields for various applications, but they either use unsigned
distances [LPZ03| which do not provide a clear inside/outside predicate, or require closed
models as input [FPRJ00, [Gib98)|, [TG96] [Bac01l [SOMO4, HLC™, [HHVW96, [SEYC96].

Contributions and Outline

The main contributions of our approach are: (i) the construction of a hierarchical signed
distance function on an octree from huge input data, resulting in the rapid construction
of a continuum of levels of detail, (ii) a novel hierarchical approach to surface extraction
using deformable models which strongly accelerates previous techniques, and finally (iii)
fully automatic hole filling on huge input data.

In what follows, we describe our algorithm to construct the hierarchical continuous dis-
tance field. After describing the hierarchical structure construction in Section [2] we define
the continuous distance in Section [3] with an appropriate interpolation scheme, and present
the continuum of levels of detail in Section [df We show three applications of our approach
in Section 5: a novel hierarchical surface extraction method using deformable models, an
alternate distance driven mesh reconstruction approach, and ray-tracing of huge point sets.
We conclude with a discussion of the merits and shortcomings of our proposed method.

2 Hierarchical Structure Construction

We want to define a signed distance function everywhere in space. We thus need to diffuse
the only local information we have: points and normals on the surface. Computing the
Euclidian distance in space can be achieved by solving the Eikonal equation:

|Vd| =1, (1)

however, the result is a function with many singularities [XP98]. Also, to our knowledge,
this equation has no resolution scheme for signed distances on point sets with holes. We thus

RR n° 5552



6 Duguet et al.

propose another approach where we first diffuse a vector field and then extract a potential.
This diffusion is thus done in two steps: the diffusion of the normal, as a vector field u,
and the computation of a scalar field d whose gradient is the vector field u. The resulting
field d, our distance function, does not correspond to the Euclidian distance, but it is very
similar. Indeed, the gradient of this distance has fewer singularities than the gradient of the
Euclidian distance. For example, if we consider a dihedral, the gradient of the Euclidian
distance is undefined on the medial axis, and not continuous, where ours is smooth.

The initial knowledge we have for our distance function construction algorithm is the
input set of points with oriented outgoing normals. Note that the gradient of the Euclidian
distance on the surface is the unit normal to the surface. We first determine the cubic
bounding box of the point set and scale it up to the volume where we want the distance
function to be defined. We name this volume domain bozx.

The algorithm is then decomposed in three steps. The first step is an initialization where
we build the octree from the input data. In the second step, we diffuse the normals in the
octree using a Gradient Vector Flow (GVF). This approach based on Laplacian smoothing is
used for 3D-snakes in [XP98| [HS04]. It provides us with a smooth vector field approximating
the Euclidian distance gradient field. We used an approach similar to [HS04] which operates
on an octree. We further optimize it for higher convergence speed. After normalization, the
output of this algorithm is a unit vector field noted u throughout the paper.

The third step uses the vector field u. We determine the scalar field d such that the
gradient of d is as close as possible to the vector field u. This can be written as an energy
minimization problem. Its solution can be obtained solving the Poisson equation. We use
the input data as boundary conditions, where the scalar field is zero.

2.1 Octree Construction

We build the octree on the domain box. The subdivision is bounded by a user-defined level
kmaz. For each input sample (position p and normal), we subdivide the octree such that,
at position p, the octree depth is k4. As a result, all points are inserted at leaf nodes of
level k4. For numerical stability reasons, we also create a restricted octree: for each cell
of level k, all the cells connected to it are of level K —1, k or k+ 1. This subdivision criterion
can be satisfied using the following recursive algorithm:

INRIA
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ForceSplit (position, k)

get leaf at position

We insert each sample (position and normal) in a leaf cell using the ForceSplit function
with the sample position and k., as input parameters, and we get the leaf cell of level
kmae at this position. We then store the normal of the sample in this cell, and compute
the distance of the center of the cell to the plane defined by the position and normal of the
sample. These cells are further referred to as data leaf cells. If several samples are inserted
in the same leaf cell, we count them and average the distances and normals. Finally, we unit
the resulting normals.

This is a streaming process, and results in a data structure with output-dependent size.
The actual samples are discarded as they are processed, and their influence (position and
normal) is accumulated as part of the octree data.

This initialization phase is the only part of the algorithm that depends on the size of the
input. Once all samples are inserted, the octree structure is frozen and the input data is no
more used.

2.2 Diffusion of normals with the GVF

To define the distance function in each octree cell, we first diffuse the normal to generate a
smooth vector field. We use the Gradient Vector Flow (GVF)[XP98|, an algorithm applied
to minimize the following energy functional:

E= / WIVul? £ [V f 2l — VP2, (2)

where f is an input scalar field, u is the computed vector field, and p the weight of the
regularization term. We will use the input unit normals instead of V f, and minimize the
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energy functional:
£~ [ ul9uf + o~ n? (3)

with n a fixed vector field defined as the input normals everywhere they are available, and
zero elsewhere.

Since we do not want to smooth the input dateﬂ we use the iterative scheme (values at
the center of the octree leaves):

U1 = ug + (1 — |nf)Auy, (4)

where A is the usual discrete Laplacian operator, and u; is the vector which evolves in this
process. We initialize it with ug = n. According to Eq. , u; fits the input normals at the
center of the data leaf cells. Since |n| =1, we have us41 = u; = ug.

For this iterative scheme, we use a multigrid approach which is known to be very efficient
with an octree structure, as shown in [Pop03]. Results are shown in Figure

Once convergence is reached, we normalize the vector field u to get a unit normal field.

2.3 Discrete Signed Distance

Our aim is now to define a distance value for the center of each octree cell. Locally around
the surface, this distance function d is defined by the distance to the tangent plane, and we
have:

Vd=n=nu. (5)

In order to extend this equation to the complete volume, we minimize the following energy
functional:

E:/|u—Vd|2. (6)
This minimum is known to be obtained by the solution of the Poisson equation:
Ad =V -u, (7)

where V - u is the divergence of the vector u.
This can be solved in a variational framework by applying an iterative scheme similar to

Eq. : .
dt+1:dt+g[Adt*V'u], (8)

where h is the size of the cell and d; is the distance function (with a value at the center of
the cell) evolving during the resolution of the equations. Note that convergence is reached
when Eq. @ is satisfied. We use a multigrid resolution scheme as presented in [Pop03],
along with the associated numeric scheme. Results are shown in Figure 3] and performances
in Table [

!The basic iterative scheme for the gradient vector flow, as in e.g. [[S04] is given by: w41 = u +
uAu; — (ug — V)|V £|?, which actually smoothes the input data.
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Figure 2: Diffusion of normals: result of the GVF algorithm for octree level 10 on the
Omphalos model (input: 11,500,000 samples). The vector field is color-coded using usual
false colors (r=x, g=y, b=z). Note that the model is rendered semi-transparently on the
cuts of the field.

As in Section 2.2, the initalization values and boundary conditions are given by the data
leaf cells. In the octree construction step, we computed the distance of the center of the
data leaf cell, and this initial value for data leaf cells are used as boundary conditions and
will not change. The other cells are initialized with d = 0.
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10 Duguet et al.

Figure 3: Discrete signed distance: result of the Poisson equation resolution algorithm
(octree level 10, Omphalos model) applied on the diffused normal field shown in Figure
Red is outside (deeper is further), blue is inside and green is where the distance is zero.

3 Distance Function
The octree contains samples of the distance and its gradient only at the center of the cells.

To obtain a continuous distance field everywhere we use two approximation schemes of these
functions, first described on a regular grid, and then extended to an octree.

INRIA
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Object (size) kmaz | tnit | GVF | Poisson | Tot.
Bunny (70 k) 7 0.17 8.2 12.9 0:21
Armadillo (350 k) 8 1.07 25 39 2:11
Buddha (1.0 M) 9 2.67 | 1:37 1:33 717
Omphalos (11.5 M) 10 27 15:16 24:48 0h39
Dancers (47.9 M) 11 4:24 | 48:57 55:21 2h49
StMatthew (370 M) 11 45:46 | 29:30 24:52 1h40

Table 1: Performances for octree construction algorithm. Platform is a Pentium IV, 2.8 GHz
with 1GB RAM, and an IDE hard drive. The columns are: object name (number of input
points, k stands for thousands and M for millions); k. is the octree depth; init, GVF and
Poisson are the times (in hours(h)minutes(:)seconds) for the initialization step, the normal
diffusion and the Poisson equation resolution respectively. Tot. is the total construction
time for all steps. For very large models, init can be up to 2/3 for loading the data and 1/3
for processing it (e.g. St.Matthew: 30 min loading and 15 min processing).

_ For these schemes, we define a prediction distance for each cell. The prediction distance
d®(x) of cell i at any position x is defined by:

dD(x) = (x —c@) . u® + 4O, (9)

where u® (resp. d¥)) are the guidance vector (resp. distance value) at the center ¢ of cell
1. This equation can be seen as a first order Taylor approximation of the distance d around
the center ¢(?). This prediction distance can be evaluated either inside or outside the cell.

We can define a coarse interpolation scheme with the prediction distance. For a given
position x, we get the prediction distance of the leaf cell at x. This interpolation scheme is
fast to evaluate, but is not continuous.

3.1 Regular Grid

Let us consider first the case of a regular grid. For a given position in space, we consider a
cubic box B, aligned with the axis, and of constant size s defined as follows:

s=(1+ a)h,

where h is the size of the cell, and « is a positive scalar. We then compute a weighted
average of the distance predicted (according to Eq.@ by the cells hit by this box:

d(x) = 3" w; ()49 = 3wy (x) (49 + (x = ¢@) - u?] | (10)

where weights w; are given by the volume of intersection between the cells j and the box
B.. Note that for o = 0, the approximation scheme becomes an interpolation scheme. An
illustration of the weights in 2D are shown in Figure 4 (top row).

RR n° 5552



12 Duguet et al.

3.2 Extension to Octree

We extend this approach to the octree by the definition of a size parameter, smoothly varying
within the domain box. Let k be the level of the cell corresponding to the position of query
x. If all the neighboring cells are either of level k or k — 1, the size parameter is given by the
previous equation. Otherwise, getting closer to a cell of higher level, the size is smoothly
reduced. Let § be the distance of x to the closest neighbor cell of level k + 1. We define
0 = min(25/hy,1). Then, by using a cubic Hermite interpolation, we define the following
C! size parameter:

2

where hy is the size of the cell at level k. An illustration of the weights in 2D is given in
Figure 4 (bottom row).

In practice, we chose @ = 0 in order to preserve details best. Increasing the value of
a will progressively smooth away details. Results of this interpolation scheme are shown
in Figure We can use the same approximation scheme for the guidance vector u when
required.

s(x) = (1+ ) F+92(3 —o)} hie, (11)

4 Level of Detail Continuum

Now that we have computed a continuous distance field d(x) everywhere in our domain box,
we can build several levels of detail of this function. The distance function defined with
this octree and the interpolation scheme is noted d,,, where n = k4, is the working level
(maximal depth of the octree). We define values at inner nodes of the octree as the average
of the values of its children. We define the other levels for the distance function of the octree
using node or leaf values up to a given level. The distance function at level k is defined by
the octree using cells of level 0 up to k. If a cell at level k£ is not a leaf, we use its node
value. We thus define a discrete set of distance functions dj..d,.

We can define a continuum of levels of detail by blending distance functions of two
successive levels. For example, the distance at level 7.5 can be defined as the average of
the distance at level 7 and the distance at level 8. More formally, let A be the level value
A < kmaz, we define dy as:

dy = (A= [ADdaj + (L= (A= [A])da), (12)

where |\] is the integer part of .

We have thus defined a continuum of surfaces along two axes: the offset axis, and the
detail axis. Note that these two axes are different. Surfaces can be defined using these two
parameters:

SO m) = {x: da(x) = u}. (13)
For a given level \, we can choose different offsets. An example is shown in Figure [7]

The following section presents how such a continuum of levels of detail can be efficiently

applied in practice.
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Figure 4: 2D illustration of the interpolation weights for two values of a. Top: for the
grid; Bottom: for the octree. Left: for the center of the cell; Middle: for a generic point;
Right: for a boundary point. Note that for o < 1, the interpolation only includes immediate
neighbors for the octree, reducing the amount of computation.

5 Applications

The continuum of levels of detail we have defined is a powerful general purpose tool. We
next present three applications: a novel hierarchical approach to surface extraction using
deformable models, a projection-based surface reconstruction algorithm, and ray-tracing of
huge point sets.

In what follows, all results are reported on a Pentium IV 2.8 GHz, with 1GB RAM and
an IDE hard drive. We used gce under MS Windows (©). In Figures [1] and @ we used the
algorithm described in [BCSOI|] to compute per-vertex illumination for our reconstructed
meshes.
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Figure 5: Continuous distance function: results of the volumetric approximation scheme
applied on the discrete distance shown in Figure |3| (Omphalos data, octree level 10).

5.1 Hierarchical Snakes

Deformable models offer a well-known framework to extract and optimize a surface under
several kinds of constraints. Two main techniques exist: parametric deformable models,
such as snakes or balloons [Coh91], and implicit deformable models such as level-
sets [CCCDO3], [MJV95]. We present in this section an implementation of the classic 3D
snake technique [CCA92] using a mesh representation of the surface.

INRIA
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| Object (iter) [ L=6 (size) | L=7 (size) | L=8 (size) | L=9 (size) | L=10 (size) [ L=11 (size) |
St.Matthew (2) || 2.1 (2.6k) | 6.0 (10.7k) | 24 (43k) | L1:49 (174k) | 8:10 (700k) | 27:40 (2.5M)
Armadillo (5) || 4.0 (3.4k) | 7.8 (3.8k) | 17 (15.4k) | 1:01 (63k) | 4:17 (256k) (n.a.)

Table 2: Timings of the snake evolution computations. iter is the number of inner snake
iterations per 1/10th level steps. time is the processing time in seconds per thousands of
vertices for a complete step with iter snake iterations. L=6..10 is the accumulated time
(min:sec) for the snake evolution including initialization at level 5. The size (in parenthesis)
represents the number of triangles in the resulting mesh.

The deformable model framework allows us to formulate our problem as a global energy
optimisation problem. After developing the corresponding Euler-Lagrange equation, the
final snake surface S is found as the solution of the following iterative equation:

oS
the discrete version being:
St+1 =5+ At(]—"emt(St) + ]-"mt(St)) (15)

The equation is composed of two terms: an external data-driven term F.,.(S) and an internal
regularisation term F;,:(S). For our particular problem, the data term is simply defined as
Fert = —du, where d is our smooth hierarchical distance and u its associated guidance vector
field. Concerning the regularisation term F;,;, we use a linear combination of a Laplacian
regularisation term, that controls the tension of the model, and a biharmonic regularisation
term, that controls its rigidity. As discussed in [DMSB99], both operators do not perform
well when the edges of the mesh have very different sizes. As a result, an additional re-
meshing step is done at the end of each iteration in order to maintain a minimum and a
maximum distance between neighboring points of the mesh. This is controlled by decimation
and refinement of the mesh, based on the edge collapse operator and the v/3-subdivision
algorithm [Kob00], respectively.

In order to guarantee appropriate evolution of the snake, the sum of the forces are
bounded by a fraction of the snakes minimal edge length. The convergence speed of the
snake is thus related to its complexity: more steps are required when we have more vertices.
We use our continuum of distance functions to make this algorithm hierarchical. We start
with a raw snake with few polygons (a hundred), and make it evolve (Eq. in a coarse
yet continuous distance function (e.g. ds). Then, we progressively increase the level X of the
distance function d) together with the complexity of the snake (induced by the edge length
criterion), and iterate. If the level steps A\ are small enough, very few iterations per level
step are necessary for convergence. In the examples we have tested, 2 to 5 iterations proved
to be sufficient for a level step AX = 1/10. The snake finally converges to the isosurface
at maximal level k.., with a small number of iterations and with increasing number of
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polygons. Timings are shown in Table 2] and resulting meshes in Figure. [I We can see
that the generation of the snake for distance level 9 is less than two minutes, and its visual
quality is already high. Generating the same mesh with previous approaches [XP98| [HS04]
required up to two hours, using the St.Matthew at level 9, where our approach converges in
less than two minutes.

However, this method has two limitations: it cannot easily handle changes in topology,
and has high memory requirements. Since it makes extensive use of connectivity and per-
forms remeshing operations, the mesh data structure needs to be stored in memory in its
entirety throughout the process. This limits the size of the models which can be generated.
We thus present in the next section a dual contouring technique driven by our hierarchical
distance function. This technique can capture topology and can generate larger meshes.
Although very fast for low resolution, the contouring approach is much slower than snakes
for higher resolution. However the two techniques can be combined. If the topology of the
object we want to reconstruct can be captured with a coarse grid (a low resolution mesh),
the result of the next method can be used as input for the hierarchical snake approach.

5.2 Distance-driven Dual Contouring

The alternate approach we propose for surface reconstruction (meshing) of any isosurface of
our distance function can be applied on any level of detail. We base our algorithm on the
ideas of Surface Nets and Dual Contouring presented in [JLSW02]. The main difference is
that we have a projection operator to compute a suitable vertex position, while in [JLSWO02]
a quadric error function is minimized using SVD.

We cast rays in a grid-like sample pattern of resolution grid-res: for each grid edge we
cast a ray following the edge line and we gather each intersection with the object. We mark
each grid edge that contains an intersection and that will correspond to a quad in the final
mesh. Then, for each of the four cells connected to a marked edge, we mark the cell as
containing a vertex. The vertex v is initially placed at the center of the cell. A face is built
by connecting the four vertices. Vertices are then moved towards the surface using a simple
projection operator II:

II(v) =v—d(v)u

This projection operator can be applied a few times to converge more precisely to the close
surface.

Using this meshing scheme, we only store the grids cells with associated vertices in an
acceleration structure. Then each insertion of a vertex in a grid cell is in fact a query for a
new or an existing vertex index. This does not require much storage, and very large meshes
can thus be constructed efficiently. These meshes are by construction manifold and hole-free.
Timings and memory are shown in Table

In order to avoid self-intersecting meshes (due to the projection operator), it is preferable
to use a grid with resolution at least as high as the octree of the level used to evaluate the
distance.
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’ Model H grid-res \ cast \ project \ size \ ram ‘
St.Matthew 64> 5.2 0.16 6.0 k 2.2
Armadillo 2563 2:03 5.23 163 k 30

H. Buddha 5123 9:55 15.9 535 k 89
Omphalos 5123 16:28 0:44 | 1,006 k | 192
Omphalos 10242 | 1h20:23 | 3:01 4,349 k | 666

St.Matthew 10243 34:11 0:55 | 1,658 k | 182

St.Matthew || 20482 | 2h48:50 | 4:34 | 6,788 k | 693

Table 3: Timings for reconstruction using the proposed distance-driven dual contouring
algorithm. cast corresponds to the computation of faces (edge casting) and for the vertices
insertion; project corresponds to the vertex projection on the isosurface; and size is the
number of vertices in the resulting mesh. ram is the peak memory usage, in megabytes.

5.3 Iso-surface Ray Tracing

Ray-tracing of various isodistances (to shrink or fatten the object) and at different levels of
detail can be performed easily using our structure. We ray-trace the hierarchical distance
function and get the position on the ray where we have the desired offset value u, working at
a given level of detail \. We use a recursive algorithm for the intersection between a ray and
an isosurface S(\, p) = {x : d) = p}. First, we get the two intersection points (A and B) of
the ray with the domain box of our distance function and we evaluate the distance at the
two points. We then use a splitting criterion: if both points are farther than x| AB| from the
object, there is no intersection and we discard the segment. & is a coefficient to account for
the fact that our distance function is not the Euclidian distance to the object. A x value of
1.1 provided excellent results with no inconsistencies. If each point has a different distance
sign, we know we have an intersection. Otherwise, the result is unknown. If we have an
intersection or we are in the unknown situation, we split the segment into two sub-segments,
and iterate until a size threshold for the segment has been reached. Below this threshold,
the unknown result is discarded, and the intersection case results in an intersection point
M interpolated from the two distance values. The guidance vector u is then interpolated
and used as an approximation of the surface normal. Results of ray-tracing are shown in

Figure [§

6 Discussion

We have presented an algorithm to generate a hierarchical distance function from points
and normals. This distance function is continuous, with a continuous gradient, allowing the
definition of a continuum of levels of detail. Three applications of our approach have been
presented: a fast hierarchical surface reconstruction algorithm using deformable models,
a distance-driven dual contouring algorithm, and ray-tracing of huge point sets. Since our
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distance function is signed, any hole or undersampling issue in the input data is automatically
corrected. Reconstructed meshes are thus hole-free.

Our method can compare to MPU [OBA™03] since we also build an octree, which stores
information for an implicit function reconstruction. Our method differs mainly in two points.
First, we require a working level k,,,, which controls the size of the structure, where MPU
requires a precision parameter for the implicit function. On the other hand, MPU has an
inherent simplification step for the octree in a way similar to [FPRJ00]. Second, we build
a continuum of levels of detail in one pass, where MPU requires one pass for each level of
detail. Our total computation time is comparable to the computation time for the MPU
algorithm for a single error threshold.

In the initialization phase, we average the set of points and normals belonging to the
same leaf cells, which is prone to error if many points are in the same cell. However we have
not encountered that problem even with the St.Matthew data. Since we consider input data
as ground truth for the surface definition, if error is present, such noise should be treated
beforehand. For example, in the case of range data misregistration, the signed distance
cannot be consistently defined by the input.

As future work, we want to handle geometric features in the hierarchical distance de-
finition, in order to represent sharp edges and corners in the resulting zero isosurface at
different levels of detail. We would also like to handle other attributes such as color or ap-
pearance. Other applications of our hierarchical distance function are possible. For example,
the guidance vector field and the resulting projection operator could be used to render Hy-
pertextures as in [PH89]. This hierarchical distance function could also be used for distant
object interaction, up to collision detection, continuously.
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Figure 6: Results of distance-driven surface reconstruction on the Omphalos model (4 million
vertices, level 10 of the octree, grid resolution: 10243).
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Figure 7: Iso-surfaces of the Happy Buddha data reconstructed using the distance-driven
dual contouring algorithm. The model is rendered with a semi-transparent cut of the dis-
tance field. Note the topology changes and the smoothness of the isosurface for the various
offsets .
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RR n° 5552
FiguI}e 8: The dancers model: 49,500,000 input points level 11 of the octree, and raytraced

at image resolution 1670x3400. Rendering this image required about 4 hours (two light
sources, and maximal reflexion depth of 2.)
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