
Occlusion-robust photo-consistency

George Vogiatzis
(g.vogiatzis@aston.ac.uk)



Occlusion-robust photo-consistency

1. Compute depth-maps from 
each view using 
neighbouring views

2. Merge depth-maps into 
single volume

3. Extract 3d surface from this 
volume



Occlusion-robust photo-consistency

1. Compute depth-maps from 
each view using 
neighbouring views

2. Merge depth-maps into 
single volume

3. Extract 3d surface from this 
volume



1. Compute depth-maps

• Occlusion effects are small between 

neighbouring views

Select a reference image and a neighbouring

image



1. Compute depth-maps

• Use matching score to find best depth at 

pixel



2. Merge depth-maps

• Use efficient volumetric data-structure



Depth-map computation

• Why not use the best binocular stereo 

algorithm?

• Makes use of spatial regularisation to 

cope with e.g. textureless regions

• Assumes only local image data is 

available

• Regularises too early



Early regularisation

True surface

Two depth-maps from neighbouring views

Missing data (e.g. textureless)



Early regularisation

Independent regularisation for each depth-map



Early regularisation

Combine the two estimates



Early regularisation

Combine the depth-maps and THEN regularise



Early regularisation

Before combining

Final result

With local regularisation Without local regularisation



Depth-map computation

• Compute completely unregularised
depth-maps independently for each 

viewpoint

• Only regularise at final stage



Find independent depth of each pixel



Combining Matching scores

• Compute one correlation curve per image

Where is the correct depth?



Simple averaging



Averaged NCC

In 3d



Peaks of matching score

KEY assumption

the correct depth appears at a local maximum of matching score



Peaks of matching score

Parzen filter- sliding counter of local maxima



Max of Parzen Filter Output

MATLAB



Near

Far

•Repeated Texture 
(match in incorrect location)

•Matching failure 
(surface not visible in one 

view, lack of texture, image 

noise etc)

Failure cases



Repeated Texture



Repeated Texture

Correct depth can be found in one of the peaks



Matching failure

• Due to 

– Occlusion

– Window distortion

– Image noise

– Lack of texture

• NCC score is essentially a random signal



Peaks of matching score

•All local maxima of Parzen filter output could be good hypotheses

•How do we pick right one?



Exploit redundancy

• Two types of redundancy:
– Depth of neighbouring pixels in same image

• Depth of neighbours can provide support for the 
correct depth hypothesis

• Useful in sparse sequences

– Depth of same pixel in neighbouring images
• If viewpoints are sufficiently close, correct depth 
hypothesis persists, incorrect is unstable.

• Useful in dense sequences



Exploit pixel neighborhoods

• Take the K top peaks of the filter output as depth hypotheses for 
each pixel. Additional hypothesis is “unknown depth”

• Build a 2D discrete MRF to select the appropriate peak

1. Unary energy  φ: bias depth towards highest peaks

2. Pair wise energy ψ: encourage neighbour pixels 
to have similar depths

• Use “unknown depth” label for robustness against low scores or 
spatially inconsistent peaks

– If one of the two neighbours is “unknown”, pair wise term is 
constant

– Small penalty cost for “unknown” labels

• MRF can be approximately solved using variety of solvers (TRW)



MRF

UU

UU

UU

Unary Term

• Penalise peaks with low score

• Threshold on peak scoreUU

Pairwise Term

• Penalise depth disparity

• Small fixed penaltyUU



Isn’t this early regularisation?

• Yes…

– …but not so bad. 

– We merely filter out outlier measurements

– If a pixel doesn’t get support for any depth 

it becomes “unknown”

– We are NOT filling in the data using a prior



Depth estimation



Max peak

Max peak

Wrong depth

chosen

Depth ambiguity



K top peaks

Local max



After MRF filtering

Local max

Chosen

depth



Local max

Max peak

Chosen

depth

Wrong depth

corrected

Depth ambiguity

acknowledged by 

“unknown” label



Multi-hypothesis MRF filtering



Depth-Map Results

Near

Far

Taking the maximum peak Results of the MRF optimisation



Near

Far

Results of the MRF optimisation

Depth-Map Results

Taking the maximum peak



Depth-Map Results

The ranking of the chosen peak

Near

Far

Results of the MRF optimisation

Peak Rank

1st

9th

5th 



Depth-Map Results

Near

Far

Peak Rank

Results of the MRF optimisation for two neighbouring depth-maps



Depth-Map Results

Results of the MRF optimisation for two neighbouring depth-maps



Exploit redundancy

• Two types of redundancy:
– Depth of neighbouring pixels in same image

• Depth of neighbours can provide support for the 
correct depth hypothesis

• Useful in sparse sequences

– Depth of same pixel in neighbouring images
• If viewpoints are sufficiently close, correct depth 
hypothesis persists, incorrect is unstable.

• Useful in dense sequences



Video-based Multi-View Stereo

~600 frames

• The correct depth appears at a local maximum 

of matching score

• With enough images, all ambiguities get 

resolved



matching score Local maximum

Pixel = depth sensor



What are the measurements like?

• Well textured pixel

• Untextured point

• Occluded point



Textured point

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Clearly defined peak

depth



Untextured point

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

depth



Occluded point

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

depth



Strategy

• Model sensor probabilistically as a Gaussian+Uniform
mixture

– Z is the actual depth we are looking for

– τ2 is the variance of the sensor (1 pixel estimated from geometry of the 
problem)

– Zmin, Zmax are the limits of the inference problem (bounding volume)

– x is the measurement

– π is the inlier ratio

p(x|Z,π)=π N(x|Z,τ2) + (1-π) U(x,Zmin,Zmax)

Zmin Z     Zmax

p(x|Z,π)



Strategy

• Large quantity of depth measurements x1,…,xt available

• We could get max likelihood solution for Z and π with 
EM, but cannot afford EM for every pixel for every 
iteration

• Particle filtering is CPU intensive

• Histograms are  memory intensive

• Need sequential inference of 
– Depth of pixel, Z

– Inlier ratio for pixel, π



Sequential inference

• Posterior at time t,
pt(Z, π):=p(Z, π|x1,…,xt)

• Likelihood of measurement at t+1,
p(xt+1|Z,π)

• Posterior at time t+1,
– pt+1(Z, π) ∝ p(xt+1|Z,π) × pt(Z, π)

• What form can pt(Z, π) take?

– Non-parametric 2d histogram is too expensive

– Can we approximate with a parametric form?
π

0

0.5

1

π

0

0.5

1

π

0

0.5

1

Z

Z

Z



• Posterior at time t,
pt(Z, π):=p(Z, π|x1,…,xt)

• Likelihood of measurement at t+1,
p(xt+1|Z,π)

• Posterior at time t+1,
– pt+1(Z, π) ∝ p(xt+1|Z,π) × pt(Z, π)

• What form can pt(Z, π) take?

– Non-parametric 2d histogram is too expensive

– Can we approximate with a parametric form?
π

0

0.5

1

Sequential inference

π

0

0.5

1

π

0

0.5

1

Z

Z

Z



Parametric posterior

• Maintain a posterior of the form

– pt(Z, π)=Beta(π|at,bt)×N(Z| µt,σt)
– Unimodal

– Beta models random variable in [0,1]

• Use moment matching to obtain pt+1(Z, π) from

pt(Z, π) and p(xt+1|Z,π)

Posterior

represented 

with 4 numbers



How well does it work?
n
o
n
-p
a
ra
m
e
tr
ic

p
a
ra
m
e
tr
ic

h
is
to
g
ra
m

Z



Evolution of estimates

50 100 150 200
−10

−5

0

5

10

Intervals are two standard deviations either side away from the mean

−5 0 5
0

5

10

15

20

25 p(x|x1,…,xN)

timetime

Z

50 100 150 200

0

0.2

0.4

0.6

0.8

1

π

x



Failure case of parametric posterior
n
o
n
-p
a
ra
m
e
tr
ic

p
a
ra
m
e
tr
ic

h
is
to
g
ra
m

Z



0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

π=14.5%

Textured point

p(x|x1,…,xN)

x



0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

π=3.7%

Untextured point

p(x|x1,…,xN)

x



0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

π=3.4%

Occluded point

p(x|x1,…,xN)

x



Interactive Multi-view stereo

Benefits:

– Faster

– Feedback leads to better models

– Still passive & cheap



Some reconstructions



3. Extract surface

• 3d deformable meshes

• Graph-cuts

• Continuous convex optimisation



3D deformable meshes

• Effectively gradient descent 
– moving mesh towards photo-consistent locations

– Smoothing at every iteration

• Vt+1:= Vt +αFdata+ βFregularisation
• Advantages:

– Fine control of the surface

– First order (Laplacian) and second order 
(biharmonic) regularisation schemes available

– Multiple clues can be fused easily, e.g. shading

• Cons:
– Global convergence is not guaranteed
– Difficult to cope with topology changes



Robust NCC volume Gradient Vector Flow

Improving convergence 



3D deformable meshes



Results



Results



Results



3D deformable meshes

• Is local optimisation (gradient descent)

• Can get stuck in local minima

• Mesh can self-intersect

• Usually very slow
– Typically hours of computation time

• Cannot change topology
– That could be an advantage, more 
regularized

• Can we do better?



Extracting a surface from photo-consistency

• Define a surface functional E[S] = some cost

• Minimize E

• Need volume term to avoid collapsing to a point

E[S] =
∫∫
S
ρ(x)dS +

∫∫∫
V (S)

σ(x)dV

ρ(x) = 1.0 - Photoconsistency
σ(x)= -1 (inflation)



Segmentation

• In segmentation tasks we combine an edge 

term with a foreground/background term

(e.g. ‘grab-cuts’ 2004) 

E[S] =
∫∫
S
ρ(x)dS +

∫∫∫
V (S)

σ(x)dV

Edge cost Foreground/background cost



How to solve this?

40

30

23

12

13

5

5
40

24

1

50

3

4

20
21

13



Graph cut

40

30

23

12

13

5

5
40

24

1

50

3

4

20
21

13



Minimum cut

40

30

23

12

13

5

5
40

24

1

50

3

4

20
21

5+5+1+4+3=18

13

Can be computed

in polynomial time 

with Ford–Fulkerson (1956)

algorithm



3D binary labelling problem

Labelling cost:

• Every voxel has a certain 
preference for being 
foreground or 
background

Compatibility cost:

• Every pair of neighbour 
voxels has a certain 
preference for being 
given the same or 
oposite labels

• Cost for opposite labels 
is greater than for same 
label (sub-modular)

or ?

or ?

+ ≤ +



Graph-cuts for binary MRFs

A B

A

A B

B

Assume

= =0

=

A B



Graph-cuts for binary MRFs

A

A

A

B

B

B

Cost for A becoming 

green and B becoming

red



Binary occupancy representation

Green = IN

Red = OUT
S

V(S)



Continuous functional

• 3D binary MRFs can be seen as discrete 

approximation to surface + volume integral 

E[S] =
∫∫
S
ρ(x)dS +

∫∫∫
V (S)

σ(x)dV

or



wij

SOURCE

wbj

wbi

Graph construction

h

ji

wbi =σσσσih
3

wij = 4/3ππππh2 * (ρρρρi + ρρρρj)/2

[Boykov and Kolmogorov ICCV 2001]

wbj =σσσσjh
3



Three equivalent representations

o
r

?

o
r

?

40

30

23

12

13

5

5
40

24

1

50

3

4

20
21

13

Binary labelling Graph partition

E[S] =
∫∫
S
ρ(x)dS +

∫∫∫
V (S)

σ(x)dV

o

r

Continious functional



Extracting surface from binary map

S

1.0

0.0

• Surface can be extracted by marching cubes 
algorithm

• Matlab: [tri, pts] = isosurface(V)
– V is binary 3d volume of 0.0s and 1.0s

– pts is a 3xN set of 3d points

– tri is a 3xM set of vertex indices denoting mesh faces



Results



Results

gcut3d binary



Results

• Problem with concave regions and 

protrusions



Protrusion problem



Protrusion problem



Protrusion problem



P(empty)
1.0

0.5

Data driven volume term

empty unknown

surface

• When a camera makes a depth 

measurement, also gives info about 

empty space

depth pdf



Data driven 3D MRF labelling cost

empty unknown

surface

P(empty) depth pdf

sensor 1

sensor N

… P(empty)

Probabilistic

sensor model

Probabilistic 

sensor fusion

1.0

0.5



Data driven 3D MRF labelling cost

• Problem: if sensor is too confident:



Data driven 3D MRF labelling cost

100% trusted sensor Robust outlier model

(sensor can be wrong)

When sensor gets depth wrong, we ‘drill hole’

inside the volume  

Solution: sensor depth distribution = Gaussian + Outlier



3D MRF for 3D modelling

Multi-resolution

grid

Edge 

cost          

Foreground/

background

cost       



Results

data-driven

ballooning

constant

ballooning


